A classification of the face numbers of Buchsbaum simplicial posets
نویسندگان
چکیده
The family of Buchsbaum simplicial posets generalizes the family of simplicial cell manifolds. The h′vector of a simplicial complex or simplicial poset encodes the combinatorial and topological data of its face numbers and the reduced Betti numbers of its geometric realization. Novik and Swartz showed that the h′-vector of a Buchsbaum simplicial poset satisfies certain simple inequalities. In this paper we show that these necessary conditions are in fact sufficient to characterize the h′-vectors of Buchsbaum simplicial posets with prescribed Betti numbers. Resumé. La famille des ordres simpliciaux de Buchsbaum est une généralisation de la famille des variétés cellules simpliciaux. Les informations combinatoriques et topologiques des nombres-f et des nombres réduits de Betti de la réalisation géométrique d’un complex simplicial ou un ordre simplicial sont encodées dans la vecteur-h′. Novik et Swartz ont montrés que la vecteur-h′ d’un ordre simplicial de Buchsbaum se remplit à certaines inégalitiés simples. Dans cet article, nous démontrons que ces conditions nécessaires sont, en effet, suffisante pour classer les vecteurs-h′ des ordres simpliciaux de Buchsbaum avec des nombres de Betti prescrits.
منابع مشابه
Socles of Buchsbaum modules, complexes and posets
The socle of a graded Buchsbaum module is studied and is related to its local cohomology modules. This algebraic result is then applied to face enumeration of Buchsbaum simplicial complexes and posets. In particular, new necessary conditions on face numbers and Betti numbers of such complexes and posets are established. These conditions are used to settle in the affirmative Kühnel’s conjecture ...
متن کاملN ov 2 00 7 Socles of Buchsbaum modules , complexes and posets
The socle of a graded Buchsbaum module is studied and is related to its local cohomology modules. This algebraic result is then applied to face enumeration of Buchsbaum simplicial complexes and posets. In particular, new necessary conditions on face numbers and Betti numbers of such complexes and posets are established. These conditions are used to settle in the affirmative Kühnel’s conjecture ...
متن کاملOn Face Vectors of Barycentric Subdivisions of Manifolds
We study face vectors of barycentric subdivisions of simplicial homology manifolds. Recently, Kubitzke and Nevo proved that the g-vector of the barycentric subdivision of a Cohen–Macaulay simplicial complex is an M -vector, which in particular proves the g-conjecture for barycentric subdivisions of simplicial homology spheres. In this paper, we prove an analogue of this result for Buchsbaum sim...
متن کاملCohen-Macaulay-ness in codimension for simplicial complexes and expansion functor
In this paper we show that expansion of a Buchsbaum simplicial complex is $CM_t$, for an optimal integer $tgeq 1$. Also, by imposing extra assumptions on a $CM_t$ simplicial complex, we provethat it can be obtained from a Buchsbaum complex.
متن کاملFace numbers of pseudomanifolds with isolated singularities
We investigate the face numbers of simplicial complexes with Buchsbaum vertex links, especially pseudomanifolds with isolated singularities. This includes deriving Dehn-Sommerville relations for pseudomanifolds with isolated singularities and establishing lower and upper bound theorems when the singularities are also homologically isolated. We give formulas for the Hilbert function of a generic...
متن کامل